Taylor's Theorem Taylor polynomials and Lagrange error bounds

Edward Pearce

The University of Sheffield

Wednesday 16th December

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Taylor polynomial

Taylor's Theorem

Historical note

Brook Taylor (1685-1731)

Direct and Reverse Methods of Incrementation $(1715)_{12}$, 2

Edward Pearce

Taylor's Theorem

The University of Sheffield

Motivation

Question How do we know $e \approx 2.71828...?$

The University of Sheffield

Edward Pearce

Question

How do we know $e \approx 2.71828...$? How might we calculate the value to greater precision?

The University of Sheffield

< 口 > < 同 >

Edward Pearce

< D > < A >

Motivation

Question

How do we know $e \approx 2.71828...$? How might we calculate the value to greater precision? How could computers help?

The University of Sheffield

Question

How do we know $e \approx 2.71828...$? How might we calculate the value to greater precision? How could computers help?

More general question

How can we effectively approximate transcendental functions?

Edward Pearce

Question

How do we know $e \approx 2.71828...$? How might we calculate the value to greater precision? How could computers help?

More general question

How can we effectively approximate *transcendental* functions? e.g. $\exp(x)$, $\sin(x)$, $\cos(x)$, $\tan(x)$, $\log(x)$, ...

< 口 > < 同 >

Motivation

Question

How do we know $e \approx 2.71828...$? How might we calculate the value to greater precision? How could computers help?

More general question

How can we effectively approximate *transcendental* functions? e.g. $\exp(x)$, $\sin(x)$, $\cos(x)$, $\tan(x)$, $\log(x)$, ...

Idea

Polynomials are easy to compute, take derivatives, integrate...

Question

How do we know $e \approx 2.71828...$? How might we calculate the value to greater precision? How could computers help?

More general question

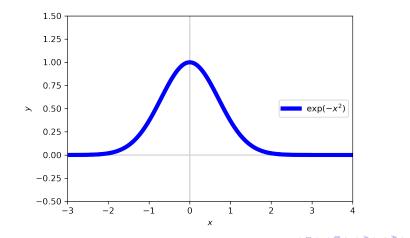
How can we effectively approximate *transcendental* functions? e.g. $\exp(x)$, $\sin(x)$, $\cos(x)$, $\tan(x)$, $\log(x)$, ...

Idea

Polynomials are easy to compute, take derivatives, integrate... We can approximate a k-times differentiable function around a given point by a polynomial of degree k.

Applications

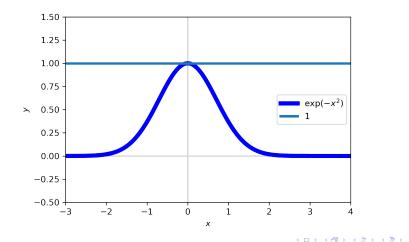
Example: Density of Normal Distribution



Edward Pearce

The University of Sheffield

Linear approximation to bell curve

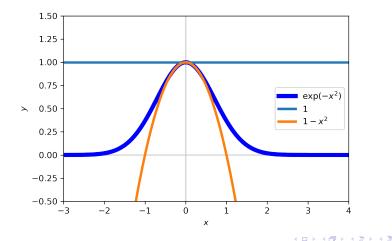


Edward Pearce

The University of Sheffield

Applications

Quadratic approximation to bell curve

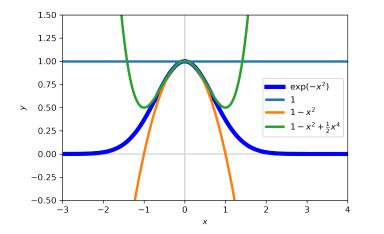


Edward Pearce

The University of Sheffield

Applications 000000

Polynomial approximations to bell curve



Edward Pearce

The University of Sheffield

< 口 > < 同 >

Taylor polynomial

Idea

We can approximate a k-times differentiable function around a given point by a polynomial of degree k.

Edward Pearce

Taylor polynomial

Idea

We can approximate a k-times differentiable function around a given point by a polynomial of degree k. What is the 'best' degree k polynomial we can choose?

Edward Pearce Taylor's Theorem The University of Sheffield

Taylor polynomial

Idea

We can approximate a k-times differentiable function around a given point by a polynomial of degree k. What is the 'best' degree k polynomial we can choose?

Definition

Let $k \ge 1$ be an integer and let $f : \mathbb{R} \to \mathbb{R}$ be a k times differentiable at the point $a \in \mathbb{R}$. Define the k-th Taylor polynomial of the function f at the point a to be

$${\sf P}_k(x)=f(a){+}f'(a)(x{-}a){+}rac{f''(a)}{2!}(x{-}a)^2{+}{\dots}{+}rac{f^{(k)}(a)}{k!}(x{-}a)^k$$

Edward Pearce

< 口 > < 同 >

Definition

Let $k \ge 1$ be an integer and let $f : \mathbb{R} \to \mathbb{R}$ be a k times differentiable at the point $a \in \mathbb{R}$. Define the k-th Taylor polynomial of the function f at the point a to be

$$P_k(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(k)}(a)}{k!}(x-a)^k$$

Remark

The k-th Taylor polynomial $P_k(x)$ of the function f at the point a is defined such that $P_k^{(j)}(a) = f^{(j)}(a)$ for all integers $0 \le j \le k$.

Special cases 1

Example (Linear approximation) Near x = a, $f(x) \approx f(a) + f'(a)(x - a)$

The University of Sheffield

Edward Pearce

Taylor's Theorem

Special cases 1

Example (Linear approximation) Near x = a, $f(x) \approx f(a) + f'(a)(x - a)$ e.g. Near x = 0, $sin(x) \approx x$ and $e^x \approx 1 + x$.

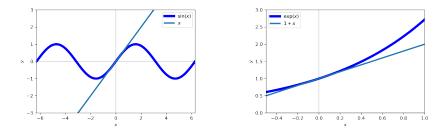
The University of Sheffield

Edward Pearce

Taylor's Theorem

Special cases 1

Example (Linear approximation) Near x = a, $f(x) \approx f(a) + f'(a)(x - a)$ e.g. Near x = 0, $sin(x) \approx x$ and $e^x \approx 1 + x$.



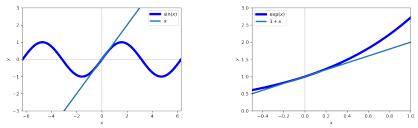
The University of Sheffield

Edward Pearce

Taylor's Theorem

Special cases 1

Example (Linear approximation) Near x = a, $f(x) \approx f(a) + f'(a)(x - a)$ e.g. Near x = 0, $sin(x) \approx x$ and $e^x \approx 1 + x$.



The graph of $y = P_1(x)$, approximating the function f near a, is the tangent line to the graph y = f(x) at x = a.

< 口 > < 同 >

Special cases 2

Example (Quadratic approximation)

Sufficiently close to x = a, a more accurate approximation is $f(x) \approx P_2(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$

Edward Pearce

Special cases 2

Example (Quadratic approximation)

Sufficiently close to x = a, a more accurate approximation is $f(x) \approx P_2(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2$ e.g. Near x = 0, $\cos(x) \approx 1 - \frac{1}{2}x^2$ and $e^x \approx 1 + x + \frac{1}{2}x^2$.

The University of Sheffield

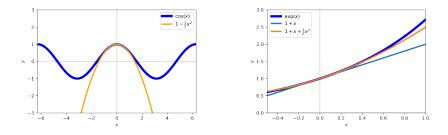
< 口 > < 同 >

Edward Pearce

Special cases 2

Example (Quadratic approximation)

Sufficiently close to x = a, a more accurate approximation is $f(x) \approx P_2(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2$ e.g. Near x = 0, $\cos(x) \approx 1 - \frac{1}{2}x^2$ and $e^x \approx 1 + x + \frac{1}{2}x^2$.

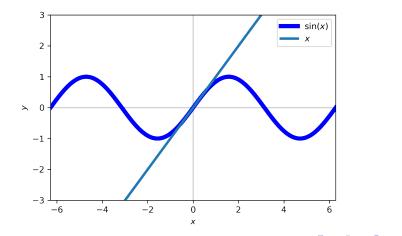


The University of Sheffield

Edward Pearce

Applications

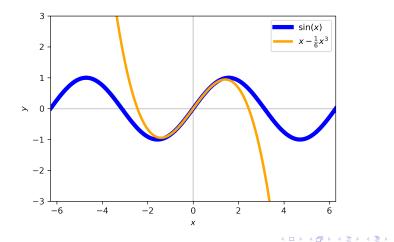
More terms/higher order approximations, ...



Edward Pearce

The University of Sheffield

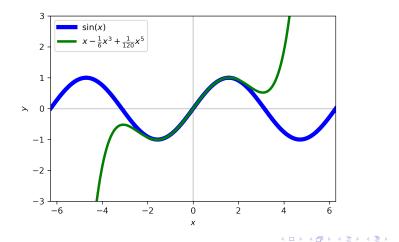
More terms, more accuracy, ...



Edward Pearce

The University of Sheffield

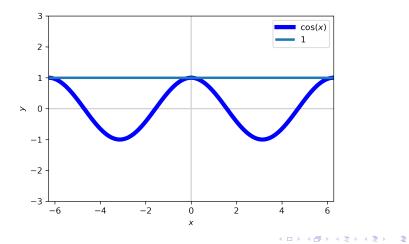
How accurate, how fast?



Edward Pearce

The University of Sheffield

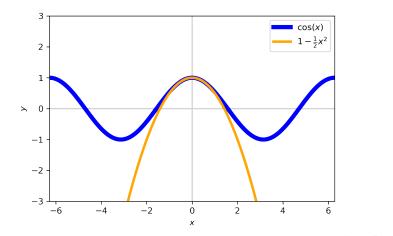
How many terms to bound error (decimal places)?



Edward Pearce

The University of Sheffield

Max error for given interval and polynomial degree?

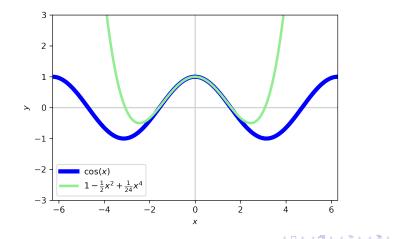


Edward Pearce

The University of Sheffield

Applications

Size of interval with given error tolerance?



Edward Pearce

The University of Sheffield

Theorem (Taylor's theorem)

Let $f : \mathbb{R} \to \mathbb{R}$ be a k times differentiable at the point $a \in \mathbb{R}$, and let $P_k(x)$ be the k-th Taylor polynomial of f at a. Then the error/remainder $R_k(x) = f(x) - P_k(x)$ between the function f and its k-th Taylor polynomial can be expressed in the form:

$$R_k(x) = h_k(x)(x-a)^k$$

for a function $h_k : \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to a} h_k(x) = 0$.

The University of Sheffield

Theorem (Taylor's theorem)

Let $f : \mathbb{R} \to \mathbb{R}$ be a k times differentiable at the point $a \in \mathbb{R}$, and let $P_k(x)$ be the k-th Taylor polynomial of f at a. Then the error/remainder $R_k(x) = f(x) - P_k(x)$ between the function f and its k-th Taylor polynomial can be expressed in the form:

$$R_k(x) = h_k(x)(x-a)^k$$

for a function $h_k : \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to a} h_k(x) = 0$.

Interpretation

As $x \to a$, the error term $R_k(x) = f(x) - P_k(x)$ tends to 0 faster than $(x - a)^k$, the highest order term of $P_k(x)$, so $P_k(x)$ is the "asymptotic best fit" degree k polynomial to f_k at $a_k \ge \infty$

Lagrange form for Taylor approximation error

Theorem (Mean-value form of the remainder) Let $f : \mathbb{R} \to \mathbb{R}$ be a k + 1 times differentiable on (a, x) with $f^{(k)}$ continuous on [a, x]. Then the error/remainder $R_k(x) = f(x) - P_k(x)$ can be expressed as:

$${R_k}(x) = rac{{{f^{\left({k + 1}
ight)}(c)}}}{{\left({k + 1}
ight)!}}{\left({x - a}
ight)^{k + 1}}$$

for some real number $c \in (a, x)$. Similarly, when x < a.

The University of Sheffield

Image: A math a math

Lagrange form for Taylor approximation error

Theorem (Mean-value form of the remainder) Let $f : \mathbb{R} \to \mathbb{R}$ be a k + 1 times differentiable on (a, x) with $f^{(k)}$ continuous on [a, x]. Then the error/remainder $R_k(x) = f(x) - P_k(x)$ can be expressed as:

$${R_k}(x) = rac{{{f^{\left({k + 1}
ight)}(c)}}}{{\left({k + 1}
ight)!}}{\left({x - a}
ight)^{k + 1}}$$

for some real number $c \in (a, x)$. Similarly, when x < a. For the proof, we first recall the mean value theorem.

Edward Pearce Taylor's Theorem Image: A mathematical states and a mathem

< D > < A >

Applications

Theorem (Mean Value Theorem (MVT))

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b] and differentiable on the open interval (a, b), where a < b. Then there exists some $c \in (a, b)$ such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

The University of Sheffield

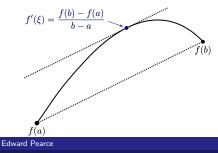
Edward Pearce

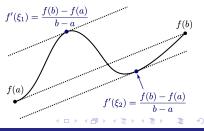
Applications

Theorem (Mean Value Theorem (MVT))

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b] and differentiable on the open interval (a, b), where a < b. Then there exists some $c \in (a, b)$ such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$





The University of Sheffield

Proof of Taylor's theorem (explicit remainder) For fixed *a* and *x*, consider the function $F(t) : [a, x] \to \mathbb{R}$ constructed such that F(x) = f(x) and $F(a) = P_k(x)$ given by

$$F(t) = f(t) + f'(t)(x-t) + \frac{f''(t)}{2!}(x-t)^2 + \ldots + \frac{f^{(k)}(t)}{k!}(x-t)^k$$

which also satisfies the criteria for MVT by the assumptions on f. Note that $F(x) - F(a) = f(x) - P_k(x) = R_k(x)$.

The University of Sheffield

<<p>< □ ト < 同 ト < 三 ト</p>

Edward Pearce Taylor's Theorem

Proof of Taylor's theorem (explicit remainder) For fixed *a* and *x*, consider the function $F(t) : [a, x] \to \mathbb{R}$ constructed such that F(x) = f(x) and $F(a) = P_k(x)$ given by

$$F(t) = f(t) + f'(t)(x-t) + \frac{f''(t)}{2!}(x-t)^2 + \ldots + \frac{f^{(k)}(t)}{k!}(x-t)^k$$

which also satisfies the criteria for MVT by the assumptions on f. Note that $F(x) - F(a) = f(x) - P_k(x) = R_k(x)$. We compute the derivate of F with respect to t using the product rule and chain rule, and note a telescoping cancellation of terms such that

$$F'(t) = rac{f^{(k+1)}(t)}{k!}(x-t)^k$$

Proof of Taylor's theorem (part 2)

Now consider the function $H(t) : [a, x] \to \mathbb{R}$ given by

$$H(t) = F(t) + \frac{F(x) - F(a)}{(x - a)^{k+1}} (x - t)^{k+1}$$

which also satisfies the criteria for MVT, with H(x) = H(a).

<<p>< □ ト < 同 ト < 三 ト</p>

Edward Pearce

Proof of Taylor's theorem (part 2)

Now consider the function $H(t): [a, x] \to \mathbb{R}$ given by

$$H(t) = F(t) + \frac{F(x) - F(a)}{(x - a)^{k+1}} (x - t)^{k+1}$$

which also satisfies the criteria for MVT, with H(x) = H(a). Applying the MVT (Rolle's theorem) to H(t), there exists $c \in (a, x)$ such that

$$H'(c) = rac{f^{(k+1)}(c)}{k!}(x-c)^k - (k+1)rac{R_k(x)}{(x-a)^{k+1}}(x-c)^k = 0$$

Rearranging this gives the desired formula for $R_k(x)$.

Edward Pearce

Remarks on the proof

Throughout the previous proof, we were treating a and x as fixed constants and instead using t as the independent variable when applying the Mean Value Theorem.

Edward Pearce

Remarks on the proof

Throughout the previous proof, we were treating a and x as fixed constants and instead using t as the independent variable when applying the Mean Value Theorem.

If we decided to apply the MVT directly to F rather than to H we would have obtained an alternative formula for the Taylor approximation error (called the Cauchy form):

$$R_k(x) = rac{f^{(k+1)}(c)}{k!}(x-c)^k(x-a)$$

for some real number $c \in (a, x)$ (a different constant than in the Lagrange form of the remainder).

Edward Pearce

Applications

Question

How many terms in a Taylor polynomial approximation do we need to bound the error to a certain number of decimal places?

Edward Pearce

Applications

Question

How many terms in a Taylor polynomial approximation do we need to bound the error to a certain number of decimal places?

Theorem (Estimating Taylor approximation error) Suppose f is (k + 1) times continuously differentiable on [a - r, a + r] and $|f^{(k+1)}(x)| \le M$ for all $x \in (a - r, a + r)$ (some r > 0). Then we can bound the error

$$|R_k(x)| = \frac{|f^{(k+1)}(c)|}{(k+1)!} |x-a|^{k+1} \le M \frac{|x-a|^{k+1}}{(k+1)!} \le M \frac{r^{k+1}}{(k+1)!}$$

for all $x \in (a - r, a + r)$.

Edward Pearce

The University of Sheffield

Examples

For
$$x \in (-\frac{\pi}{4}, \frac{\pi}{4})$$
, $|\cos(x) - (1 - \frac{1}{2}x^2)| < \frac{\pi^4}{24 \times 4^4} \approx 0.016$..

The University of Sheffield

Edward Pearce

Examples

For
$$x \in (-\frac{\pi}{4}, \frac{\pi}{4})$$
, $|\cos(x) - (1 - \frac{1}{2}x^2)| < \frac{\pi^4}{24 \times 4^4} \approx 0.016$..
For $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $|\cos(x) - (1 - \frac{1}{2}x^2 + \frac{1}{24}x^4)| < \frac{\pi^6}{720 \times 2^6} \approx 0.02$

・ロト・西ト・ヨト・ヨー うへの

The University of Sheffield

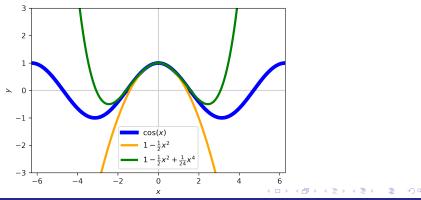
Edward Pearce

Taylor polynomia

Taylor's Theorem

Examples

For
$$x \in (-\frac{\pi}{4}, \frac{\pi}{4})$$
, $|\cos(x) - (1 - \frac{1}{2}x^2)| < \frac{\pi^4}{24 \times 4^4} \approx 0.016$..
For $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $|\cos(x) - (1 - \frac{1}{2}x^2 + \frac{1}{24}x^4)| < \frac{\pi^6}{720 \times 2^6} \approx 0.02$



Edward Pearce

The University of Sheffield

Motivation 00000 Taylor's Theorem

Applications

We may calculate $e \approx 2.71828$, correct up to five decimal places, using the fact that for $-1 \le x \le 1$

$$e^{x} = 1 + x + rac{x^{2}}{2!} + \ldots + rac{x^{9}}{9!} + R_{9}(x), \quad |R_{9}(x)| < 10^{-5}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

The University of Sheffield

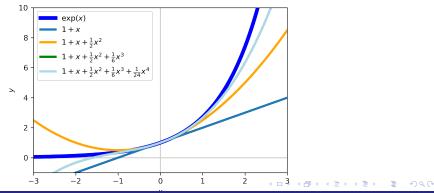
Edward Pearce

 Motivation
 Taylor polynomial
 Taylor's Theorem

 00000
 00000000
 000000

We may calculate $e \approx 2.71828$, correct up to five decimal places, using the fact that for $-1 \le x \le 1$

$$e^{x} = 1 + x + rac{x^{2}}{2!} + \ldots + rac{x^{9}}{9!} + R_{9}(x), \quad |R_{9}(x)| < 10^{-5}$$



Edward Pearce

The University of Sheffield

Applications

Summary

Key Takeaway

Taylor polynomials and Taylor series translate derivative information at a single point into approximation information around that point.

< 口 > < 同 >

Edward Pearce

< D > < A >

Summary

Key Takeaway

Taylor polynomials and Taylor series translate derivative information at a single point into approximation information around that point.

 We can approximate differentiable functions by polynomials

Edward Pearce

Summary

Key Takeaway

Taylor polynomials and Taylor series translate derivative information at a single point into approximation information around that point.

- We can approximate differentiable functions by polynomials
- We can calculate an upper bound on the error between our approximations to a function and its true value

Summary

Key Takeaway

Taylor polynomials and Taylor series translate derivative information at a single point into approximation information around that point.

- We can approximate differentiable functions by polynomials
- We can calculate an upper bound on the error between our approximations to a function and its true value
- We understand that linear and quadratic approximations have practical uses in physics and engineering, but may diverge outside a neighbourhood of the approximation point

< D > < A >

Future Directions

 Examples of functions where Taylor's theorem does not apply (e.g. antiderivative of sin(¹/_x))

Image Credits: Wikipedia (Brook Taylor, Mean Value Theorem); Matplotlib

Edward Pearce

Taylor's Theorem

The University of Sheffield

Future Directions

- Examples of functions where Taylor's theorem does not apply (e.g. antiderivative of sin(¹/_x))
- Analytical functions and radius of convergence (non-analytic smooth function $\exp(-\frac{1}{x^2})$)

Image Credits: Wikipedia (Brook Taylor, Mean Value Theorem); Matplotlib

Future Directions

- Examples of functions where Taylor's theorem does not apply (e.g. antiderivative of sin(¹/_x))
- Analytical functions and radius of convergence (non-analytic smooth function $\exp(-\frac{1}{x^2})$)
- Applications in physics (e.g. potential energy of a pendulum)

Image Credits: Wikipedia (Brook Taylor, Mean Value Theorem); Matplotlib

Future Directions

- Examples of functions where Taylor's theorem does not apply (e.g. antiderivative of sin(¹/_x))
- Analytical functions and radius of convergence (non-analytic smooth function $\exp(-\frac{1}{x^2})$)
- Applications in physics (e.g. potential energy of a pendulum)
- Applications in numerical analysis (finite difference methods)

Image Credits: Wikipedia (Brook Taylor, Mean Value Theorem); Matplotlib

Taylor's Theorem

Thanks for listening!

・ロト・日本・日本・日本・日本・日本

Edward Pearce

Taylor's Theorem

The University of Sheffield