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Motivation Taylor polynomial Taylor’s Theorem Applications

Motivation
Question
How do we know e ≈ 2.71828...?

How might we calculate the value to greater precision?
How could computers help?

More general question
How can we effectively approximate transcendental functions?
e.g. exp(x), sin(x), cos(x), tan(x), log(x), . . .

Idea
Polynomials are easy to compute, take derivatives, integrate...
We can approximate a k-times differentiable function around a
given point by a polynomial of degree k .
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Example: Density of Normal Distribution
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Linear approximation to bell curve
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Quadratic approximation to bell curve
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Polynomial approximations to bell curve
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Taylor polynomial
Idea
We can approximate a k-times differentiable function around a
given point by a polynomial of degree k .

What is the ‘best’ degree k polynomial we can choose?

Definition
Let k ≥ 1 be an integer and let f : R→ R be a k times
differentiable at the point a ∈ R. Define the k-th Taylor
polynomial of the function f at the point a to be

Pk(x) = f (a)+f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+. . .+ f (k)(a)

k! (x−a)k
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Definition
Let k ≥ 1 be an integer and let f : R→ R be a k times
differentiable at the point a ∈ R. Define the k-th Taylor
polynomial of the function f at the point a to be

Pk(x) = f (a)+f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+. . .+ f (k)(a)

k! (x−a)k

Remark
The k-th Taylor polynomial Pk(x) of the function f at the
point a is defined such that P(j)

k (a) = f (j)(a) for all integers
0 ≤ j ≤ k .
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Special cases 1
Example (Linear approximation)
Near x = a, f (x) ≈ f (a) + f ′(a)(x − a)

e.g. Near x = 0, sin(x) ≈ x and ex ≈ 1 + x .

The graph of y = P1(x), approximating the function f near a,
is the tangent line to the graph y = f (x) at x = a.
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Special cases 2
Example (Quadratic approximation)
Sufficiently close to x = a, a more accurate approximation is
f (x) ≈ P2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

e.g. Near x = 0, cos(x) ≈ 1− 1
2x

2 and ex ≈ 1 + x + 1
2x

2.
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More terms/higher order approximations, ...
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More terms, more accuracy, ...
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How accurate, how fast?
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How many terms to bound error (decimal places)?
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Max error for given interval and polynomial degree?
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Size of interval with given error tolerance?
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Taylor’s theorem
Theorem (Taylor’s theorem)
Let f : R→ R be a k times differentiable at the point a ∈ R,
and let Pk(x) be the k-th Taylor polynomial of f at a.
Then the error/remainder Rk(x) = f (x)− Pk(x) between the
function f and its k-th Taylor polynomial can be expressed in
the form:

Rk(x) = hk(x)(x − a)k

for a function hk : R→ R such that limx→a hk(x) = 0.

Interpretation
As x → a, the error term Rk(x) = f (x)− Pk(x) tends to 0
faster than (x − a)k , the highest order term of Pk(x), so Pk(x)
is the "asymptotic best fit" degree k polynomial to f at a.
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Lagrange form for Taylor approximation error

Theorem (Mean-value form of the remainder)
Let f : R→ R be a k + 1 times differentiable on (a, x) with
f (k) continuous on [a, x ]. Then the error/remainder
Rk(x) = f (x)− Pk(x) can be expressed as:

Rk(x) = f (k+1)(c)
(k + 1)! (x − a)k+1

for some real number c ∈ (a, x). Similarly, when x < a.

For the proof, we first recall the mean value theorem.
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Theorem (Mean Value Theorem (MVT))
Let f : [a, b]→ R be a continuous function on the closed
interval [a, b] and differentiable on the open interval (a, b),
where a < b. Then there exists some c ∈ (a, b) such that

f ′(c) = f (b)− f (a)
b − a
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Proof of Taylor’s theorem (explicit remainder)
For fixed a and x , consider the function F (t) : [a, x ]→ R
constructed such that F (x) = f (x) and F (a) = Pk(x) given by

F (t) = f (t)+f ′(t)(x−t)+ f ′′(t)
2! (x−t)2+. . .+ f (k)(t)

k! (x−t)k

which also satisfies the criteria for MVT by the assumptions
on f . Note that F (x)− F (a) = f (x)− Pk(x) = Rk(x).

We compute the derivate of F with respect to t using the
product rule and chain rule, and note a telescoping
cancellation of terms such that

F ′(t) = f (k+1)(t)
k! (x − t)k
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Proof of Taylor’s theorem (part 2)
Now consider the function H(t) : [a, x ]→ R given by

H(t) = F (t) + F (x)− F (a)
(x − a)k+1 (x − t)k+1

which also satisfies the criteria for MVT, with H(x) = H(a).

Applying the MVT (Rolle’s theorem) to H(t), there exists
c ∈ (a, x) such that

H ′(c) = f (k+1)(c)
k! (x − c)k − (k + 1) Rk(x)

(x − a)k+1 (x − c)k = 0

Rearranging this gives the desired formula for Rk(x).
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Remarks on the proof
Throughout the previous proof, we were treating a and x as
fixed constants and instead using t as the independent variable
when applying the Mean Value Theorem.

If we decided to apply the MVT directly to F rather than to H
we would have obtained an alternative formula for the Taylor
approximation error (called the Cauchy form):

Rk(x) = f (k+1)(c)
k! (x − c)k(x − a)

for some real number c ∈ (a, x) (a different constant than in
the Lagrange form of the remainder).
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Applications
Question
How many terms in a Taylor polynomial approximation do we
need to bound the error to a certain number of decimal places?

Theorem (Estimating Taylor approximation error)
Suppose f is (k + 1) times continuously differentiable on
[a − r , a + r ] and |f (k+1)(x)| ≤ M for all x ∈ (a − r , a + r)
(some r > 0). Then we can bound the error

|Rk(x)| = |f
(k+1)(c)|

(k + 1)! |x − a|k+1 ≤ M |x − a|k+1

(k + 1)! ≤ M r k+1

(k + 1)!

for all x ∈ (a − r , a + r).
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Examples
For x ∈ (−π

4 , π
4 ), | cos(x)− (1− 1

2x
2)| < π4

24×44 ≈ 0.016..

For x ∈ (−π
2 , π

2 ), | cos(x)− (1− 1
2x

2 + 1
24x

4)| < π6

720×26 ≈ 0.02
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We may calculate e ≈ 2.71828, correct up to five decimal
places, using the fact that for −1 ≤ x ≤ 1

ex = 1 + x + x2
2! + . . . + x9

9! + R9(x), |R9(x)| < 10−5
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Summary
Key Takeaway
Taylor polynomials and Taylor series translate derivative
information at a single point into approximation information
around that point.

I We can approximate differentiable functions by
polynomials

I We can calculate an upper bound on the error between
our approximations to a function and its true value

I We understand that linear and quadratic approximations
have practical uses in physics and engineering, but may
diverge outside a neighbourhood of the approximation
point
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Future Directions

I Examples of functions where Taylor’s theorem does not
apply (e.g. antiderivative of sin( 1x ))

I Analytical functions and radius of convergence
(non-analytic smooth function exp(− 1

x2 ))
I Applications in physics (e.g. potential energy of a

pendulum)
I Applications in numerical analysis (finite difference

methods)

Image Credits: Wikipedia (Brook Taylor, Mean Value
Theorem); Matplotlib
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End

Thanks for listening!
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