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Introduction

If Y is a cyclic quotient singularity, then the
topology of the Hilbert scheme Hilbn(Y ) may be
understood in terms the intersection pairing on the
exceptional curves in the maximal resolution of Y .
In an algebraic analogue to Morse theory, we use a
Białynicki-Birula decomposition on Hilbn(Y ) to
determine its topological properties. The critical
points and their indices are computed using the
combinatorics of partitions. We may analyse
Hilbn(Y ) from only the ’core’ partitions, and their
structure is governed by the exceptional curves of
the maximal resolution of Y .

Hilbert schemes of points on smooth surfaces

Let X [n]= Hilbn(X ) be the Hilbert scheme of n
points on a smooth quasiprojective surface X over
C. Then X [n] is a smooth 2n-dimensional complex
manifold parametrising n points on X . When

X =C2 is the complex plane, points in
(
C2

)[n]
are

simply codimension n ideals in C[x ,y ].
Ellingsrud-Strømme exploited the action of an
algebraic torus on C2 to derive the generating
function for the Poincaré polynomials Pt(X [n]) of
X [n] in the case X =C2, reducing the problem to
computations in the combinatorics of partitions.

(C×)2-invariant points in
(
C2

)[n]
are precisely the

codimension n monomial ideals in C[x ,y ], and
these are in bijection with partitions of n. Göttsche
generalised this result to any smooth surface X
showing that the homology of X [n] is determined by
the homology of X . More precisely, if bi(X ) is the
i th Betti number of X , then
∞∑
n=0

qnPt(X
[n])=

∞∏
m=1

4∏
i=0

(1+(−1)i+1t2m−2+iqm)(−1)i+1bi(X )

Can we obtain similar insight into Hilbn(X ) when
we allow X to have mild singularities?

Hilbert schemes of quotient singularities

If G is a finite Abelian group acting on C2with trivial
stabilisers away from the origin, then C2/G is a
surface whose smooth points are free G -orbits of
points in C2 and which has an isolated singularity at
the origin. Points in Hilbn(C2/G ) are G -invariant
codimension n ideals in C[x ,y ], thus give rise to
n-dimensional representations of G . C2/G also
admits a torus action, so Ellingsrud-Strømme’s
method may be used to understand the homology
of Hilbn(C2/G ). Hilbn(C2/G ) splits into connected
components Hilbν(C2/G ) consisting of ideals giving
rise to the same n-dimensional G -representation ν.
The G -Hilbert scheme of C2 is the component of
Hilb|G |(C2/G ) corresponding to the regular
representation of G , which is the minimal
resolution for C2/G via the Hilbert-Chow map.

Białynicki-Birula decomposition

Comparable to Morse theory, the Białynicki-Birula
decomposition expresses a space with a torus
action as a union of affine spaces indexed by the
fixed points of the action. If we know the dimension
of the affine space associated to each fixed point,
then we may understand the topology of the overall
space. Each connected component Hilbν(C2/G )
admits an induced toric action, so we may
understand the topology of Hilbn(C2/G ) through
this decomposition. The index of a fixed point is
determined by the weights of the torus action on its
tangent space, which may be computed as certain
statistics on the corresponding partition.

Maximal Resolutions and Toric Geometry

For a resolution π :Y ′→Y of a surface quotient
singularity Y we may write
KY ′|Y :=KY ′−π∗KY =∑

j(αj −1)Ej , where Ej are the
exceptional divisors, αj ∈Q. In the study of
deformation theory, Kollár and Shepherd-Barron
defined the maximal resolution in terms the
discrepencies: π is called maximal if it is maximal
with respect to the property 0<αj < 1.
The maximal resolution is uniquely determined,
and can be constructed from the minimal
resolution by successive blowing up of points Ei∩Ej
with αi +αj ≥ 0.
When we have a cyclic quotient singularity (i.e. a
two-dimensional toric variety) Yσ, the minimal
resolution of Yσ is the toric variety corresponding
to the subdivision of σ by rays through points on
the Newton boundary of σ, whereas the maximal
resolution of Yσ is the toric variety obtained by

subdividing the polyhedral cone σ=
〈
v 0;v k+1

〉
⊂R2

by drawing rays through 0 and all interior lattice
points of the triangle ∆ := conv(0,v 0,v k+1),
respectively.

Diagram: Resolutions of Y (15,2)

The maximal resolution is given by the polyhedral
subdivision Σ of σ= 〈

v 0;v 3
〉

given below, whilst the
minimal resolution uses only the rays through v 1

and v 2, respectively.
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Hirzebruch-Jung Continued fractions

Let r ,b be coprime integers with r > b > 0. Then the
Hirzebruch-Jung continued fraction of r/b is the
expression

r

b
= a1− 1

a2− 1
a3−...

= [a1,a2, . . . ,ak]

This is a unique expression for any rational number
greater than 1, and has all ai ≥ 2.

Continued fractions and the minimal resolution

For Yσ=Y (r ,b) we may label points on the Newton

boundary of σ= 〈
(1,0);(−b, r)

〉= 〈
v 0;v k+1

〉
by

v 0, . . . ,v k+1. The minimal resolution of Yσ is the
toric variety YΣ corresponding to the polyhedral
subdivision Σ of σ by rays through the origin and
each point v j , respectively. We have relations
v j−1+v j+1= ajv

j for j = 1, . . . ,k , where
r
b = [a1,a2, . . . ,ak]. Moreover, the numbers −aj are
equal to the self intersection numbers of the
exceptional divisors. The maximal resolution can
be constructed from the minimal resolution by
successive blowing up of certain points Ei ∩Ej , and
the self intersection numbers of the resulting
exceptional divisors may also be obtained by an
analogous procedure on the continued fraction.

Core partitions

For a cyclic quotient singularity Y , we perform a
Białynicki-Birula decomposition of Hilbn(Y ) using
the torus action induced from the action on C2. The
torus-fixed points correspond to partitions of n, and
the torus weights on the tangent space to a fixed
point may be computed as certain statistics on the
corresponding partition. If we impose certain
restrictions on these partition statistics we obtain a
class called the core partitions, which generate all
the others. For these core partitions, the tangent
space to the associated fixed point in Hilbn(Y ) is
restricted so that the associated cell is stuck over
the singular point in Y . The core partitions form a
lattice governed by the exceptional curves of the
maximal resolution of Y , and the area of a core
partition is a quadratic form on the coordinates
whose purely quadratic part may be obtained from
the intersection pairing on the exceptional curves.

Theorem

The core partitions form a lattice governed by the
exceptional curves of the maximal resolution of Y ,
and the area of a core partition is a quadratic form
on the coordinates whose purely quadratic part may
be obtained from the intersection pairing on the
exceptional curves.

Diagram: Linear approximation of a core partition

The core partitions may be split into parts made up
of repeating segments, where the average slope of
the basic segments are given by the primitive lattice
points generating the rays in the maximal
resolution. The diagram below illustrates the
macroscopic structure of core partitions by
approximating the parts of the core partition by
lines with their average slope.
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The area under the configuration of lines in terms
of the coordinates of the intercepts of the lines is a
quadratic form which may also be obtained from
the intersection pairing on the exceptional curves
on the maximal resolution. The discreteness of
partitions introduces additional linear terms into
their exact area formula.

Conclusion

If Y is a cyclic quotient singularity, then the
topology of the Hilbert scheme Hilbn(Y ) may be
understood in terms the intersection pairing on the
exceptional curves in the maximal resolution of Y .
Next steps could include finding Göttsche-type
product formulas for the Betti numbers.
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